

SANTEDB / SANTESUITE
Software Requirements & Design Specification

Justin Fyfe et al.
justin@fyfesoftware.ca

Abstract
SanteSuite is a comprehensive, interoperable health systems software platform built on

top of the powerful SanteDB iCDR. It provides all functions required to fully realize a
patient-centered digital-health ecosystem.

SanteDB/SanteSuite Design 1

1. Document Information
1.1.1. Revision History

Name Date Reason Version

Justin Fyfe 2018-08-01 Initial fork from OpenIZ
documentation.

1.10

Justin Fyfe 2018-11-25 Added and updated the
security section and
refactored more OpenIZ
references to be more
accurate after the code
refactor.

1.11

1.2. Related Documents
Related Document Relevance

OpenIZ Design Specification Basis of this document

SanteDB/SanteSuite Design 2

2. Contents
1. Document Information .. 1

1.1.1. Revision History .. 1

1.2. Related Documents .. 1

2. Contents .. 2

3. Introduction .. 5

3.1. Purpose.. 5

3.2. Project Scope ... 5

3.3. About the Client ... 6

3.4. Team Members .. 6

4. Overall Description .. 7

4.1. Alternative Products .. 7

4.1.1. SanteDB Alternatives .. 7

4.1.2. SanteMPI Alternatives .. 7

4.1.3. SanteEMR ... 8

4.2. Project Principles ... 8

4.3. Project Features / Deliverables ... 9

4.4. User Classes and Characteristics ... 9

4.4.1. Clinical Staff .. 10

4.4.2. Receptionist ... 10

4.4.3. Clinic Manager ... 11

4.4.4. Regional Manager .. 11

4.4.5. System Administrator ... 12

4.4.6. Governing Authority / National Officers .. 13

4.4.7. Audit / Privacy Officers ... 13

4.4.8. Application Developer / Implementer / Technical Expert .. 14

4.4.9. Patient ... 14

4.5. HDS Platform ... 15

4.6. Web Portal Operating Environment ... 15

4.7. Mobile App Operating Environment ... 15

4.8. Assumptions and Dependencies ... 15

5. Requirements .. 16

5.1. User Stories / Use Cases ... 16

SanteDB/SanteSuite Design 3

5.1.1. User Logs In With Valid Credentials .. 16

5.1.2. User Logs In With Invalid Credentials .. 16

5.1.3. User Resets their Password .. 16

5.1.4. User Reviews Appointments ... 16

5.1.5. User checks-in existing Patient ... 16

5.1.6. User copies remote demographics into the system ... 16

5.1.7. User registers a new Patient ... 17

5.1.8. Patient presents and is past due / has no appointment .. 17

5.1.9. Patient presents and provides new demographics .. 17

5.1.10. Clinical Staff performs encounter ... 17

5.1.11. Patient has an adverse reaction after encounter... 18

5.1.12. National officer enables a new application ... 18

5.1.13. District / Regional / National Officer runs summary reporting ... 18

5.2. Other Non-Functional Requirements .. 18

5.2.1. Performance Requirements .. 18

5.2.2. Safety Requirements .. 18

5.2.3. Security Requirements ... 19

5.2.4. Quality Assurance Requirements .. 19

6. Interface Considerations .. 20

6.1. User Interfaces ... 20

6.2. Software Interfaces .. 20

6.3. Communications Interfaces .. 20

7. Solutions Architecture ... 22

7.1. Solution Architecture ... 22

7.2. Network / Physical Architecture ... 23

7.2.1. Single Server Deployment ... 24

7.2.2. Multi-Server Deployment ... 24

7.3. Software Architecture .. 26

7.3.1. SanteDBΩǎ LƳƳǳƴƛȊŀǘƛƻƴ aŀƴŀƎŜƳŜƴǘ {ȅǎǘŜƳ !ǊŎƘƛǘŜŎǘǳǊŜ ... 26

7.3.2. SanteDBΩǎ !ŘƳƛƴƛǎǘǊŀǘƛƻƴ ϧ /ƻƴŦƛƎǳǊŀǘƛƻƴ !ǊŎƘƛǘŜŎǘǳǊŜ ... 46

7.3.3. Disconnected Client Architecture ... 51

7.4. Communications / Interoperability Architecture .. 53

7.4.1. Communicating with the HDS ... 54

SanteDB/SanteSuite Design 4

7.4.2. Immunization Management Service Interface (HDSI) .. 54

7.4.3. Report Integration Services Interface(RISI) ... 91

7.4.4. HL7 FHIR ... 93

8. Data Architecture .. 96

8.1. Conceptual Data Model .. 96

8.1.1. Clinical Domain ... 96

8.2. Logical Data Design .. 104

8.2.1. Design Notes .. 104

8.2.2. Entity Relationships .. 108

8.2.3. SanteDB Concept Model ... 113

8.2.4. SanteDB Act Model... 122

8.2.5. SanteDB Security Model ... 130

8.2.6. SanteDB Stock Model ... 138

8.2.7. SanteDB Entity Model ... 138

8.2.8. SanteDB Protocol Model .. 154

8.3. Physical Data Design .. 158

8.3.1. Microsoft SQL Server Data Model .. Error! Bookmark not defined.

8.3.2. Generic ADO Data Model.. 158

8.4. Business Data Model .. 167

8.4.1. Business Data Model Queries ... 167

8.4.2. Foundational Classes .. 168

8.4.3. Security Classes .. 170

8.4.4. Data Types ... 170

8.4.5. Acts .. 171

8.4.6. Entities ... 172

8.5. Pre-Configured Data Reference .. 173

8.5.1. Object Identifier (OID) Reference.. 174

SanteDB/SanteSuite Design 5

3. Introduction

3.1. Purpose
The SanteSuite platform (http://santesuite.com) represents a comprehensive and cohesive software

platform for realizing patient-centered digital health ecosystems. Built atop the powerful SanteDB

platform, SanteSuite components are designed from the ground-up to interoperate with each other and

with other software systems.

The platform provides a generic launchpad from which individual states or jurisdictions can design and

customize their own software solutions that suit their use cases. However, SanteSuite also provides

useful out of the box functionality that makes deployment faster and easier.

SanteDB uses an extensible, open architecture which allows for the addition of features such as

materials management, analytics, authentication, outbreak management, internet of things, reporting &

national data submissions, and much more.

Through this design and the implementation of plugins, it is envisioned that countries can select a

package of features which work to achieve an appropriate solution for their environment. For example,

a country may select a custom immunization forecasting logic module with a stock management module

to support the query of immunizations and stock management capability.

3.2. Project Scope
The scope of SanteSuite is quite large, it is comprised of several platform components which further

specialize the SanteDB core to perform a necessary function within a digital health ecosystem. At a high

level, the components of SanteSuite are:

1. SanteDB ς An extensible intelligent Clinical Data Repository (iCDR). {ŀƴǘŜ5.Ωǎ ŎƻǊŜ {5Y ŀƴŘ

server infrastructure provides the necessary functions to match records, make clinical decisions,

execute business rules, store and retrieve clinical data, perform security audits and privacy

controls, operate on mobile and laptop devices offline, synchronize and resolve conflicts.

2. SanteMPI ς ! ǇƻǿŜǊŦǳƭ ƳŀǎǘŜǊ ǇŀǘƛŜƴǘ ƛƴŘŜȄ ǎƻŦǘǿŀǊŜ ǿƘƛŎƘ ƭŜǾŜǊŀƎŜǎ {ŀƴǘŜ5.Ωǎ ƳŀǘŎƘƛƴƎ ŀƴŘ

MDM plugins to implement the features necessary to operate an MPI. SanteMPI provides the

backbone of a master patient index and includes a series of plugins, configurations, and applets

ǊŜǉǳƛǊŜŘ ǘƻ ƻǇŜǊŀǘŜ {ŀƴǘŜ5. άŀǎ ŀέ atLΦ

3. SanteEMR ς The EMR project represents an enhancement to the SanteDB experience. It extends

the SanteDB core user experience and makes it more generic and easier to implement custom

primary care forms and templates.

4. SanteInsight ς The insights tool provides a de-identified data stream to a standardized data

warehouse copy of SanteDB. This allows donors and ministries of health to get real-time, de-

identified, patient level reports for analysis.

5. SanteGuard ς The guardian tool provides a complete audit repository solution for any

connected SanteSuite product or any other product that uses IETF RFC3881, DICOM or FHIR

audits.

6. SanteGrid ς The grid solution allow for easy federation and peer-to-peer communication

between SanteDB instances. SanteGrid provides a centralized table of contents for health data

amongst connected peers and allows any connected SanteDB instance to query that index for

patient information.

http://santesuite.com/

SanteDB/SanteSuite Design 6

3.3. About the Client
SanteSuite is a community initiative that will, potentially, produce a multitude of clients. The basis for

the requirements used for the design of SanteSuite are a collection of those specified as part of projects

that have been conducted around the world. This section will describe the general characteristics of

such an environment.

 The expected clients of this software range from low-to-medium income countries (LMIC) to individual

states and provinces in developed countries. This broad base poses a variety of unique challenges. One

of the primary challenges of public health professionals working in the field is that of reliable network

connectivity and power. The solution shall take into account that feature-rich electronic devices may not

be a viable solution and paper based or SMS based interfaces may be used as input into the system. This

is true of LMIC but is also true of rural and indigenous regions in developed countries as well.

Furthermore, it is expected that the solution should be able to run on low powered, low cost hardware

and server infrastructure. Great care shall be taken during the development and design stages of this

project to ensure that optimal performance can be achieved on relatively low powered, low cost

machines to achieve the widest possible adoption.

There can also be a severe shortage of άreceptor ŎŀǇŀŎƛǘȅέ ƻǊ ŀ capability on the part of implementing

countries to deploy, manage and support these systems. Great care shall be taken in the documentation

of the infrastructure, plugin architecture and installation procedures for the service. Where possible, it

should be assumed that working knowledge of the underlying technical details is scarce. Multiple

deployment options are also supported, including cloud options for greatest reach and custom local

deployments where required to meet local legislative or other requirements.

3.4. Team Members
Being a community project, we seek to engage general partners where possible online. Upon

commencement the team shall consist of the following members:

Table 1 - Team Members

Name Role Organization

Justin Fyfe Architect / Lead Developer Mohawk College

Joseph Dal-Molin Product Design & Evangelism e-Cology Corp.

Paul Brown Product Owner & Community
Lead

Mohawk College

Nityan

SanteDB/SanteSuite Design 7

4. Overall Description
This section provides a high level description of the system.

4.1. Alternative Products
Because the breadth of the SanteSuite product offerings, there are a multitude of alternative products.

We believe that SanteSuite products should, at minimum, match the capabilities of these products and

exceed them.

4.1.1. SanteDB Alternatives
SanteDB is an iCDR, this means that many regular CDR software products are alternative products. Two

major alternatives have been identified:

¶ SmileCDR ς An initiative which provides a fully functional FHIR CDR. SmileCDR offers features

similar to SanteDB.

¶ HEARTH ς An initiative from JEMBI health systems, which provides an open source FHIR CDR.

We feel that SanteDB offers several key advantages over these alternatives, namely:

¶ SanteDB does not use FHIR or any other messaging format as its storage format, it uses a more

flexible clinical information model. Therefore SanteDB is insulated from changes to the FHIR

standard or any other standard.

¶ {ŀƴǘŜ5. άǎǇŜŀƪǎέ ǎǘŀƴŘŀǊŘǎ ƻǘƘer than FHIR. We have to be realistic, while FHIR has great

potential in new developments, many environments are brownfield, meaning there are a

multitude of systems which already leverage HL7v2, HL7v3, CDA, XDS, and other messaging

formats. Rather than forcing these trading partners to upgrade to FHIR, we can interoperate

with them on the CDR side.

¶ SanteDB provides insights and clinical decision support right out of the box. While other CDRs

can ōŜ άƘƻƻƪŜŘ ǳǇέ ǘƻ ŀ /5{{ ǎƻƭǳǘƛƻƴΣ ǘƘŜǊŜ ŀǊŜ ǎŜǾŜǊŀƭ ƛǎǎǳŜǎ ǿƛǘƘ ǘƘƛǎ ƛƴŎƭǳŘƛƴƎ άŎƻƳǇƭŜǘŜ

ǇƛŎǘǳǊŜέΦ ! /5w Ƴŀȅ ƴƻǘ ǿƛǎƘ ǘƻ ŘƛǎŎƭƻǎŜ ǘƘŀǘ ŀ ǇŀǘƛŜƴǘ Ƙŀǎ IL±Σ ƘƻǿŜǾŜǊ ŀ ƎƻƻŘ /5{{ ǎȅǎǘŜƳ

needs this information to make a determination of which vaccinations to suggest to a clinician.

By integrating CDSS into the SanteDB platform, we allow the CDSS to make decisions based on

the complete picture of the patient.

¶ SanteDB provides ƻŦŦƭƛƴŜ ǎȅƴŎƘǊƻƴƛȊŀǘƛƻƴ ǊƛƎƘǘ ƻǳǘ ƻŦ ǘƘŜ ōƻȄΦ ¢Ƙŀǘ ƛǎ ǊƛƎƘǘΣ {ŀƴǘŜ5.Ωǎ ŎƭƛŜƴǘ {5Y

provides offline synchronization without the need for designing one from scratch. Developers

simply implement their desired user interfaces in HTML5 and JavaScript and SanteDB takes care

of the rest.

¶ SanteDB is multi-ǇƭŀǘŦƻǊƳΦ ²Ŝ ŘƻƴΩǘ ƳŜŀƴ Ƨǳǎǘ άǊǳƴǎ ƻƴ [ƛƴǳȄ ŀƴŘ ²ƛƴŘƻǿǎέΣ ǿŜ ƳŜŀƴ Ǌǳƴǎ ƻƴ

Linux, Windows, MacOS, Android, Raspberry Pi, etc. Not only that but the platform can be

customized to run on PostgreSQL, Oracle, FirebirdSQL, or SQLite. This allows maximum flexibility

in adapting SanteDB to your licensing model and ecosystem.

4.1.2. SanteMPI Alternatives
Being a Master Patient Index, SanteMPI has a multitude of alternate products. Many are commercial

offerings (such as Tiani, and Initiate), however this analysis will focus on just the open source or free

alternatives.

SanteDB/SanteSuite Design 8

¶ OpenEMPI ς Which provides enhanced MPI functionality including graph based matching,

multiple standards support and MDM functionality.

¶ MEDIC CR ς The previous version of SanteMPI. This MPI provides only basic matching and

storage of patient attributes, however has excellent standard support.

With SanteMPI, the major goals of the solution are to enhance the matching algorithms and incorporate

machine learning algorithms ǎǳŎƘ ǘƘŀǘ {ŀƴǘŜatL ǇǊƻǾƛŘŜǎ ŀ άōŜǘǘŜǊ a95L/ /wέΦ LƴŎƭǳŘŜŘ ŦŜŀǘǳǊŜǎ ǘƻ ōŜ

targeted:

¶ SanteMPI must have an easy to use patient duplicate resolution user interface. That is to say,

finding, resolving and marking duplicates should be made easy.

¶ SanteMPI must have a flexible matching algorithm / engine (based on SanteMatch) which

applies the best practice record linkage strategies outlined here:

https://www.ncbi.nlm.nih.gov/books/NBK253312/#

¶ {ŀƴǘŜatL Ƴǳǎǘ ƛƴŎƻǊǇƻǊŀǘŜ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ ǘƻ άƎŜǘ ōŜǘǘŜǊέ ŀǘ ƳŀǘŎƘƛƴƎΦ

4.1.3. SanteEMR
SanteEMR has several open source and commercial alternatives. Some alternatives to SanteEMR are:

¶ OSCAR ς Developed by McMaster University. While OSCAR pioneered many concepts of an

EMR, its development has seemed to slow and the screens and user experience has become

dated. Also, the solution is highly tailored to the Canadian market.

¶ OpenMRS ς Developed by Regenstreif, OpenMRS is a world leader in terms of deployments of

disease based forms.

¶ OpenEHR ς

SanteEMR has several key advantages over the listed alternatives:

¶ It does not require any internet connection to function out of the box. Whereas OpenMRS

ǊŜǉǳƛǊŜǎ ǎǇŜŎƛŀƭƛȊŜŘ ƳƻŘǳƭŜǎ ǘƻ ǇŜǊŦƻǊƳ ƛƴŘƛǾƛŘǳŀƭ ŦǳƴŎǘƛƻƴǎ ƻŦŦƭƛƴŜΣ ŀƭƭ ƻŦ {ŀƴǘŜ9awΩǎ ŦǳƴŎǘƛƻƴǎ

can be performed offline without any changes to the underlying platform..

¶ SanteEMR synchronizes all business rules, clinical protocols, data, and schedules across server

and client interfaces. This means that any new business rules, protocols, or data is automatically

sent and executed by the connected clients.

¶ {ŀƴǘŜ9awΣ ōŜƛƴƎ ōŀǎŜŘ ƻƴ {ŀƴǘŜ5.Ωǎ ƛ/5w ǘŜŎƘƴƻƭƻƎȅ ƛǎ capable of master data management

ŦǳƴŎǘƛƻƴǎ όa5aύ ƛƴ ǿƘƛŎƘ ƳǳƭǘƛǇƭŜ ǎƻǳǊŎŜǎ ƻŦ Řŀǘŀ Ŏŀƴ ōŜ ƳŀƛƴǘŀƛƴŜŘ ŀƴŘ ŀƎƎǊŜƎŀǘŜŘ ǘƻ άƻƴŜ

ǎƻǳǊŎŜ ƻŦ ǘǊǳǘƘέ

¶ The alternative products do not lay down a comprehensive, detailed security audit trail.

SanteEMR supports detailed auditing of all user activities and these audits are shipped to the

central audit repository for further analysis.

¶ SanteEMR support record level privacy controls and break-the-glass functionality. This

ŦǳƴŎǘƛƻƴŀƭƛǘȅ ƛǎ ǎǳǇǇƻǊǘŜŘ Ǿƛŀ {ŀƴǘŜ5.Ωǎ integrated IdP.

4.2. Project Principles
At a high level, this project seeks to:

- Provide developer extensibility and configuration points in all aspects of the service core,

https://www.ncbi.nlm.nih.gov/books/NBK253312/

SanteDB/SanteSuite Design 9

- Provide extensive documentation for developers and users,

- Provide a disciplined approach for quality assurance, including the requirement of unit testing

services on all modules in the project,

- Promote of code-reuse and standards wherever possible as integration points,

- Provide heavily normalized data model where journaling is a first class citizen and not an

afterthought,

- Apply Security by design and privacy by design principles.

4.3. Project Features / Deliverables
As stated prior, the SanteDB project seeks to provide a series of highly customizable components into a

series of deliverables that will be used as the basis for implementation. Envisioned as deliverables are:

1. iCDR Backbone: An extensible software ǎƻƭǳǘƛƻƴ ǘƘŀǘ Ŏƻƴǘŀƛƴǎ ǘƘŜ ƳŀƧƻǊƛǘȅ ƻŦ άƻƴƭƛƴŜέ ƭƻƎƛŎ

required to perform immunizations, track and merge events from remote sites, perform stock

management functions, etc.

2. Administrative Portal: A website that can be used by administrators to maintain the backbone

configuration including customization of reports, stock items, antigens, etc.

3. Disconnected Client Mobile App: A mobile application that can operate offline for long periods

and be used to collect immunization data within a clinic.

4. Disconnected Client Desktop App: A desktop based application which can operate in

disconnected mode for long periods of time and be used to collect immunization data within a

clinic.

5. Disconnected Server: A miniature server which is capable of servicing larger clinics which have a

LAN connection but lack a WAN connection.

6. Web App: An application which allows online access over the internet.

7. Developer SDK: A development toolkit which will permit developers to create their own

applications.

The need to customize edge devices speaks to one founding principle of the SanteDB project that is

extensibility.

4.4. User Classes and Characteristics
This section will seek to introduce the user classes. A user class is not necessarily a technical role nor is it

a single person, rather, it is a mechanism used to consider how a particular role is expected to interact

with the system. A user class will have a series of skills, duties and concerns that will be addressed.

Table 2 - User Classes and Characteristics

User Class Classifier Priority

Clinic Staff Low technical skill, expertise in delivery of health services. VH

Receptionist Low technical skill M

Clinic Manager Low technical skill, expertise in gathering statistics and
managing stock.

H

Regional Manager Low technical skill, expertise in gathering statistics and
managing stock.

M

System Administrator High technical skill, expertise in systems management. M

Governing Authority Medium technical skill, expertise in funding and strategy. M

SanteDB/SanteSuite Design 10

Audit / Privacy Officer Medium technical skill, expertise in privacy legislation. M

Application Developer High technical, expertise in creating new extensions. M

Patient Technical skill unknown, expertise in adhering to appointments M

4.4.1. Clinical Staff
The clinical staff user class is defined as an individual whom performs health delivery tasks at local clinics

and is responsible for clinical observation (such as adverse reactions, weight, etc.).

4.4.1.1. Skills

The clinical staff within a clinic is typically quite capable of performing duties related to health delivery.

The staff member will typically have moderate to low technical skill and is expected to be able to use a

simple user interface to enter simple fields like date/time of an action and the result of their action (for

example, date/time of immunization and the result or date/time of weight and the measure).

4.4.1.2. Duties

The clinic staff is often busy and the use of the application is often a tertiary duty. It is important that

the clinical staff not be distracted from the primary duties of ensuring healthy patient population.

4.4.1.3. Concerns

The clinical staff may have many concerns with the technical solution, including:

- Time, the application must not introduce a bottleneck in the process of caring for patients.

- !ŎŎǳǊŀŎȅΣ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ Ƴǳǎǘ ǇǊƻǾƛŘŜ ŀƴ ŀŎŎǳǊŀǘŜ ŘŜǇƛŎǘƛƻƴ ƻŦ ǘƘŜ ǇŀǘƛŜƴǘΩǎ ƳŜŘƛŎŀƭ status

including weight, history of medical status, and correct demographics.

- Confidentiality, the application must provide a mechanism that ensures vital information such as

immune compromised is shown the officer but not shown to other generic users

4.4.2. Receptionist
The receptionist user class represents an individual who is responsible for preparing the visit by

performing tasks such as demographics collection/updates, scheduling of future appointments, etc. The

receptionist may be the same person as the clinical staff in some low resource settings, or may be a

separate person representing the clinic.

4.4.2.1. Skills

The receptionist is expected to have lower technical skill than the clinical staff, however be adept at

using simple technology such as filling in form fields, reading a calendar and following recommendations

presented.

4.4.2.2. Duties

¢ƘŜ ǊŜŎŜǇǘƛƻƴƛǎǘΩǎ ǇǊƛƳŀǊȅ ŘǳǘƛŜǎ ƛƴŎƭǳŘŜΥ

- Onboarding new patients that arrive at a service delivery location, or updating existing patient

demographics at presentation

- Ensuring identification is accurate and up to date, including immunization cards and/or health

insurance information

- Notifying the clinical staff that the patient has arrived, or placing the patient into the ŎƭƛƴƛŎΩǎ

άǿŀƛǘƛƴƎ ǊƻƻƳέ, confirming with the patient the purpose of the encounter.

SanteDB/SanteSuite Design 11

4.4.2.3. Concerns

The receptionist many concerns with the technical solution, including:

- Time: the application must not introduce a bottleneck in the process of queuing patients.

- Difficulty: the application must not be difficult to use and/or present confusing dialogues or

options to the receptionist.

- Accuracy: the application must provide validation that ensures that the keystroking of the

receptionist does not cause a faulty record.

4.4.3. Clinic Manager
A clinic manager user class represents an individual who is responsible with the operation of a single

clinic and ensures that the clinic has sufficient stock perform daily functions, running reports to ensure

adherence, etc.. The clinic manager is also responsible for the transfer of stock to/from a regional

distributor, managing the clinics stock balance and ensuring that any technology used within the clinic is

not operating in an error state.

4.4.3.1. Skills

The clinic manager is expected to have higher technical skill than the clinical staff does, and should be

adept at stock counting, basic math (such as converting vials into doses) and reporting.

4.4.3.2. Duties

¢ƘŜ ŎƭƛƴƛŎ ƳŀƴŀƎŜǊΩǎ ǇǊƛƳŀǊȅ ŘǳǘƛŜǎ ƛƴŎƭǳŘŜΥ

- Performing stock counts at set intervals and reporting current stock to a regional authority.

- Ordering and receiving stock into the facility and returning expired/unusable stock to another

authority.

- Ensuring that any technology used in the clinic is operating in a non-faulted state and that any

technology is ready for patient care duties (charged and functional).

- Preparing/running reports which relate to the operation of the clinic such as stock forecasts

(days of remaining stock), number of patients seen, number of outstanding technical issues

(failures, etc.), number of patients expected in the coming days, etc.

4.4.3.3. Concerns

The clinic manager may have concerns with the technical solution, including:

- Accuracy: The solution must provide accurate information (as is possible) related to the current

stock and function of the clinic such as patient population, forecasted patients and consumption

of stock, etc.

- Communication: The solution must provide a mechanism for ordering stock in a manner that the

manager can see the status of their order can place additional orders, and view balances.

- Security: The solution must provide a secure access layer that prevents unauthorized access to

lost/stolen tablets and must ensure the clinic manager does not view information they are not

permitted to view.

4.4.4. Regional Manager
A regional manager is an individual who is responsible for the management of a collection of clinics

within a specific region such as district, county, city, province, etc. The regional manager is responsible

SanteDB/SanteSuite Design 12

for ensuring sufficient stock is available for the clinics in their region, and ensuring that care coverage

meets specified targets.

4.4.4.1. Skills

A regional manager may be of moderate technical skill and, it is expected, should be able to interpret

reports and manipulate data within a basic tool like excel, print reports and scan.

4.4.4.2. Duties

The regional ƳŀƴŀƎŜǊΩǎ ǇǊƛƳŀǊȅ ŘǳǘƛŜǎ ƛƴŎƭǳŘŜΥ

- Organizing stock orders, packing them for subordinate facilities and delivering or facilitating

pick-up of the orders.

- Running reports for their district/region and adjusting stock, vaccination campaigns, or outreach

programmes.

- Reporting to higher echelons of administration the performance of their region.

- Ordering stock from national distributors of vaccine and ensuring sufficient safety stock to

supply their region.

- Device provisioning including onboarding of new users and devices for use within their region

and ensuring lost devices are purged/located and user accounts locked under correct conditions.

4.4.4.3. Concerns

The regional manager may have concerns with the technical solution, including:

- Accuracy: The solution must provide accurate information (as is possible) related to the current

stock and function of clinics such as patients seen, forecasted patients and consumption of

stock, etc.

- Communication: The solution must provide a mechanism for relaying status of a stock order in a

manner that the manager can see the status of their order, can place additional orders, and

view balances, pick stock from their current store, etc.

- Security: The solution must provide a secure access layer that prevents unauthorized access to

lost/stolen tablets and must ensure the regional manager does not view information they are

not permitted to view such as discrete data.

4.4.5. System Administrator
A system administrator is an individual who is responsible for the planning, setup and maintenance of

the solution.

4.4.5.1. Skills

The system administrator is typically a highly skilled individual who is responsible for the maintenance of

several software systems within a region/district/country. The administrator in some LMIC may have

less technical skill but still be familiar with basic database terminology, practices, etc.

4.4.5.2. Duties

¢ƘŜ ǎȅǎǘŜƳ ŀŘƳƛƴƛǎǘǊŀǘƻǊΩǎ ŘǳǘƛŜǎ ƛƴŎƭǳŘŜΥ

- Backup of computer databases which contain PHI

- Maintenance of security accounts, and devices permitted to log in within a particular region.

SanteDB/SanteSuite Design 13

- Setup and installation of software components and their upgrades including networking

configuration.

- Advanced technical support, analysis of log files, and other diagnostic tool output.

- Planning of physical architecture, deployment timelines, OID registrations, etc. including the

issuance and revocation of PKI certificates.

4.4.5.3. Concerns

A system administrator will typically have several concerns with technical solutions that may include:

- Security: What impact on the network surface area will the solution have, and how will the

solution adversely affect the operation of other systems within the enterprise.

- Reliability: What is the reliability of the solution and the burden on the administration that

technical support calls will place on resources?

- Cost: What is the cost of maintaining the infrastructure after initial capital costs? What are the

costs related to the installation of the system and what, if any, are the licensing impacts on the

operating budget and IP of other systems in the network (example: GPL)

- Auditability: What is the traceability of the solution? How easy are deployment mis-

configurations to find and diagnose? How difficult are logs to obtain? Do the logs contain

sufficient information to quarantine data and/or users and machines in case of breach?

4.4.6. Governing Authority / National Officers
National authority / officers are individuals who are responsible for the planning and maintenance of a

national health programmes. These individuals typically have moderate technical skills and are primarily

interested in stock management and reporting functions.

4.4.6.1. Skills

A national officer has data analytics skills and moderate technical skill required to customize reports and

manipulate data in Excel. A national officer or programme coordinator may be interested in customizing

reports themselves.

4.4.6.2. Duties

¢ƘŜ ƴŀǘƛƻƴŀƭ ƻŦŦƛŎŜǊΩǎ ǇǊƛƳŀǊȅ Řǳǘȅ ƛǎ ǘƘŜ ǊǳƴƴƛƴƎ ƻŦ ǎŜŎƻƴŘŀǊȅ ǳǎŜ ǊŜǇƻǊǘǎ ŀƴŘ ǘƘŜ ƭŜǾŜǊŀƎƛƴƎ ƻŦ ǘƘŜǎŜ

reports to perform business intelligence functions. The governing authority is also responsible for the

administration and creation of legislation.

4.4.6.3. Concerns

¢ƘŜ ƴŀǘƛƻƴŀƭκƎƻǾŜǊƴƛƴƎ ŀǳǘƘƻǊƛǘȅΩǎ ǇǊƛƳŀǊȅ ŎƻƴŎŜǊƴ ǿƛƭƭ ōŜ ǘƘŀǘ ƻŦ ǇǊƻǾŜƴŀƴŎŜ ŀƴŘ ƎƻǾŜǊƴŀƴŎŜ

capabilities of the system. The national officer may be responsible for ensuring that new legislation

passed can be implemented within the system and that reports are accurate and up to date.

4.4.7. Audit / Privacy Officers
Privacy officers are individuals who are responsible for the implementation and adherence of the system

and its users to policies configured for the jurisdiction. The privacy officer is also concerned about

security breaches, performing spot audits to ensure that users are using the system correctly.

SanteDB/SanteSuite Design 14

4.4.7.1. Skills

The privacy officer is of moderate technical skill, and high domain expertise skill. The privacy officer has

the ability to use Microsoft office products, as well as basic BI tools and web-interfaces for detecting

security breaches.

4.4.7.2. Duties

The primary duties of the privacy officer include the setup and validation of configured policies within

the core application as well as performing routine privacy audits on the system. The privacy officer is

also responsible for participating in threat risk assessments and privacy impact assessments.

4.4.7.3. Concerns

The primary concerns of the privacy officer are that the system will enforce consent policies imposed by

the deployment jurisdiction, and that any overrides are easily identifiable in any audit logs. The privacy

officer will also be concerned with the detail of PIA and TRA assessments performed against the system

and will require lots of documentation related to the security services provided by the system.

4.4.8. Application Developer / Implementer / Technical Expert
The application developer, implementer and technical expert class is used to describe those

professionals who will be developing integration points for the SanteDB system for the purpose of

implementing the solution in a jurisdiction.

4.4.8.1. Skills

The technical expert is of high technical skill and is able to understand application programming

interfaces (API) documentation and how these APIs can be used to control the system for the purpose of

their implementation.

4.4.8.2. Duties

¢ƘŜ ǘŜŎƘƴƛŎŀƭ ŜȄǇŜǊǘΩǎ ǇǊƛƳŀǊȅ ŘǳǘƛŜǎ ƛƴŎƭǳŘŜ ǘƘŜ ŘŜǾŜƭƻǇƳŜƴǘ ŀƴŘ ŎǳǎǘƻƳƛȊŀǘƛƻƴ ƻŦ ǘƘŜ SanteDB

solution, as well as the deployment and configuration for a particular deployment. Technical experts

may also develop plugins and/or consumer applications of the platform.

4.4.8.3. Concerns

¢ƘŜ ǘŜŎƘƴƛŎŀƭ ŜȄǇŜǊǘΩǎ ǇǊƛƳŀǊȅ ŎƻƴŎŜǊƴ ƛǎ ǘƘŀǘ ƻŦ ŜŀǎŜ ƻŦ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ŀƴŘ ƛƴǘŜƎǊŀǘƛƻƴ ƻŦ ǘƘŜ ǎƻƭǳǘƛƻƴΦ

The technical expert expects the system to provide sufficient application programming interface hooks

in order for them to sufficiently expand the system to complete whatever implementation work they are

performing. The technical expert will also be concerned with the stability and robustness of

documentation of interfaces as well as the performance of the system and availability of development

tools.

4.4.9. Patient
The patient class is used to describe the consumer of the healthcare services or one of their delegates.

This may include parents, relatives, guardians, etc. While patients are directly users of the system per-

se, they may play a role in the use of personal portals into the system.

4.4.9.1. Skills

Patients may be of varying skill from complete computer illiteracy, to high technical shrewdness. Patient

interfaces should use simple language and only display the necessary information for the patient to

understand the data that they are viewing.

SanteDB/SanteSuite Design 15

4.4.9.2. Duties

The primary duties of the patient class are the attending of appointments registered in the system, and

the obtaining of proper patient identification to be identified within the system.

4.4.9.3. Concerns

Primary patient concerns involve the proper and accurate identification of data, the cleanliness (clarity)

of interfaces and confirmation prior to submitting any changes to the system.

4.5. HDS Platform
The design of the backbone is not platform specific and could be implemented in a number of different

ways. The initial version discussed in this design document will be implemented using the Microsoft

server stack, making use of the following technologies:

Table 3 - HDS Implementation Platforms

Technology Reasoning Relates To

Microsoft .NET Framework Execution Environment Backbone, Web Interface,
Administrative Interface

Microsoft SQL Server 2014 Database Environment Backbone

PostgreSQL Server 9.4.x Database Environment Backbone

MEDIC Service Core Framework Robust set of existing plugins
available.

Backbone

There is future plans to upgrade the WCF based service core services into the MSIL implementation of

HTTP handlers. This will permit operation of HTTP interfaces on Linux and MacOS X.

4.6. Web Portal Operating Environment
The web portal operating environment for SanteDB will leverage NancyFX. NancyFX can operate in a

standalone manner, removing the need to setup IIS or other supporting infrastructure.

4.7. Mobile App Operating Environment
Reference mobile apps will be created for both the providers and the patients. To achieve the maximum

possible device support Xamarin will be used as the platform of choice. A wrapper in Xamarin will load

and execute HTML5 and JavaScript applet files.

4.8. Assumptions and Dependencies
The primary risk to implementation is the use of proprietary components upon which the stack will be

based. To achieve the lowest cost deployment for LMICs, components that cannot be licensed as free

and open source shall be avoided where possible.

SanteDB/SanteSuite Design 16

5. Requirements
This document outlines several basic use cases upon which the SanteDB platform was created. The

requirements listed here are a target of requirements that a system using the SanteDB platform could

perform.

5.1. User Stories / Use Cases

5.1.1. User Logs In With Valid Credentials
A clinical staff member uses the mobile app to log into their provided user account. The device has an

active internet connection. Upon login the device sends a unique device identifier to the central

authentication system proving its identity. If the user credential is valid, and the device credential is

valid, then the system audits the successful login.

5.1.2. User Logs In With Invalid Credentials
A clinical staff member uses the system to log into their provided user account. During the login process

one of the credentials provided to the system (device or user) is invalid. The system alerts the user to

the invalid credential condition and audits the invalid access attempt.

Alternate: The user continues to provide invalid credentials. After the third invalid login attempt the

device does not permit another attempt for a 60 second period effectively locking the device.

5.1.3. User Resets their Password
A clinical staff member wishes to log into the device, however forgets their password. The staff member

uses the system to reset their password from a registered device. The user enters their username and

selects a method of reset (e-mail or SMS) providing the necessary security check. The user receives an

out of band code that they enter into the forgotten password system. The forgotten password

subsystem validates the out of band code provided to the user with the token generated and, if valid,

permits the user to enter a new password.

5.1.4. User Reviews Appointments
If login is successful, the clinical staff member is presented with a dashboard portal. The user uses the

dashboard to review the appointments in the system. The system provides a list of appointments for

review and filtering by the user of the point of service device. The system does not disclose

appointments for patients outside the clinical staff membersΩǎ ǊŜǎǇƻƴǎƛōƛƭƛǘȅ όǘƻ ōŜ ŀǇǇƭƛŜŘ ōȅ ǇƻƭƛŎȅΣ

facility, etc.)

5.1.5. User checks-in existing Patient
A patient presents to the clinic for a routine service. The receptionist scans their identification which

performs an identification search within the system. The receptionist verifies the information and

ǇǊƻŎŜŜŘǎ ǘƻ άŎƘŜŎƪ-ƛƴέ ǘƘŜ ǇŀǘƛŜƴǘΦ

Alternate: The patient presents without an identification card, however has attended the clinic before.

¢ƘŜ ǊŜŎŜǇǘƛƻƴƛǎǘ ǳǎŜǎ ǘƘŜ ǎȅǎǘŜƳ ǘƻ ǎŜŀǊŎƘ ǘƘŜ ƭƻŎŀƭ ŎƭƛƴƛŎΩǎ ǳǎŜǊ ŘŀǘŀōŀǎŜΦ

5.1.6. User copies remote demographics into the system
A patient presents to the clinic for their routine service. The patient has never presented to the clinic

before, however has a national identification card. The patient presents this which is used by the

ǊŜŎŜǇǘƛƻƴƛǎǘ ǘƻ ŘƻǿƴƭƻŀŘ ǘƘŜ ǇŀǘƛŜƴǘΩǎ ŘŜƳƻƎǊŀǇƘƛŎ ŘŀǘŀΦ ¢ƘŜ ǎȅǎǘŜƳ ǉǳŜǊƛŜǎ ǘƘŜ ƴŀǘƛƻƴŀƭ ƛŘŜƴǘƛŦƛŎŀǘƛƻƴ

SanteDB/SanteSuite Design 17

system and presents a series of results to the user. The receptionist selects the appropriate record and

indicates that the patient should be imported.

The receptionist continues to check-in the patient.

Variation: The recepǘƛƻƴƛǎǘ ǳǇŘŀǘŜǎ ǘƘŜ ǇŀǘƛŜƴǘΩǎ ŘŜƳƻƎǊŀǇƘƛŎ Řŀǘŀ ŀƴŘ ǎǳōƳƛǘǎ ǘƘŜ ŎƘŀƴƎŜǎΦ The

system conveys this change to the national patient registry.

5.1.7. User registers a new Patient
A previously unregistered patient presents to the clinic. The patient has never visited the clinic before

and does not have a national or regional identification from another clinic. The receptionist gathers the

ǳǎŜǊΩǎ ŘŜƳƻƎǊŀǇƘƛŎ ŘŜǘŀƛƭǎ ŀƴŘ ŜƴǘŜǊǎ ǘƘŜƳ ƛƴǘƻ ǘƘŜ ǎȅǎǘŜƳΦ ¢ƘŜ ǊŜŎŜǇǘƛƻƴƛǎǘ ǎŀǾŜǎ ǘƘŜ ƴŜǿ

demographic record which results in a new patient record within the system. The receptionist saves any

existing clinical data the patient has in the system. The system calculates a care schedule for the patient

and schedules appointments if necessary. The receptionist reviews the created schedule, and if

necessary, continues to check-in the patient.

Variation: This new identification is posted to the national records system which results in a new

jurisdictional identifier for the patient.

Variation: ¢ƘŜ ƴŜǿ ǇŀǘƛŜƴǘΩǎ ŘŜƳƻƎǊŀǇƘƛŎǎ ŜȄŀŎǘƭȅ ƳŀǘŎƘ ǘƘŜ ŘŜƳƻƎǊŀǇƘƛŎǎ ƻŦ ŀƴƻǘƘŜǊ ǇŀǘƛŜƴǘ ŀƭǊŜŀŘȅ

registered in the SanteDB system. The receptionist is shown a warning confirming that this is in fact a

new patient or if the patient is a duplicate.

Variation: ¢ƘŜ ƴŜǿ ǇŀǘƛŜƴǘΩǎ ŘŜƳƻƎǊŀǇƘƛŎǎ ŜȄŀŎǘƭȅ ƳŀǘŎƘ ǘƘŜ ŘŜƳƻƎǊŀǇƘƛŎǎ ƻŦ ŀƴƻǘƘŜǊ ǇŀǘƛŜƴǘ ŀƭǊŜŀŘȅ

registered in the SanteDB system. The patient is registered. At a later time, a district officer retrieves a

ƭƛǎǘ ƻŦ ŎƻƴŦƭƛŎǘǎ ŀƴŘ ǊŜǎƻƭǾŜǎ ǘƘŜ ŘǳǇƭƛŎŀǘŜ ǊŜŎƻǊŘΦ ¢ƘŜ ŘǳǇƭƛŎŀǘŜ ǊŜŎƻǊŘΩǎ clinical history data is copied

into the new patient master file.

5.1.8. Patient presents and is past due / has no appointment
A patient presents to the clinic without an appointment, or is late for an existing scheduled

ŀǇǇƻƛƴǘƳŜƴǘΦ ¢ƘŜ ǊŜŎŜǇǘƛƻƴƛǎǘ ǳǎŜǎ ǘƘŜ ǎȅǎǘŜƳ ǘƻ ƭƻƻƪ ǳǇ ǘƘŜ ǇŀǘƛŜƴǘΩǎ ǊŜŎƻǊŘǎΣ ŀƴŘ ƭƻƻƪǎ ŀǘ ǘƘŜ ƳƛǎǎƛƴƎ

(past-due) events within the system. The receptionist requests the system to generate an on-demand

care plan/recommendation, the system creates an appointment with the past-due events scheduled on

the current date. The receptionist checks-in the patient for the created appointment.

Variation: The system displays the past due vaccination and automatically generates an updated

schedule and displays any warnings if appropriate (ex: some vaccines may be unsafe or may require a

different dosing).

5.1.9. Patient presents and provides new demographics
A patient presents to the clinic for their routine immunization. The patient informs the receptionist that

their demographics information (phone number, address, etc.) has changed. The receptionist keys the

ŎƘŀƴƎŜŘ Řŀǘŀ ƛƴǘƻ ǘƘŜ ǎȅǎǘŜƳ ŀƴŘ ǎŀǾŜǎ ǘƘŜ ǇŀǘƛŜƴǘΩs demographic information.

5.1.10. Clinical Staff performs encounter
After being checked in, the patient waits ƛƴ ǘƘŜ άǿŀƛǘƛƴƎ ǊƻƻƳέ ŦƻǊ ǎƻƳŜ amount of time. The clinical

staff member calls the patient into a private area to discuss their medical history, and reviews the

SanteDB/SanteSuite Design 18

actions to be taken for the specific encounter. The physician starts the encounter recording

measurements (such as height, weight, etc.) and adjusts the list of actions to be performed based on

what is considered safe.

5.1.11. Patient has an adverse reaction after encounter
After receiving an immunization, the patient is instructed to wait a certain time period before leaving

the clinic (discharge). During this time the patient develops a rash/fever/other reaction. The clinical staff

member uses the system to record the adverse event (i.e. updates the immunization encounter).

Alternative: After going home, the patient starts to develop an adverse reaction to the vaccine given

during a previous encounter. The patient returns to the clinic. The Clinical Staff Member amends the

previous encounter entering an adverse reaction.

5.1.12. National officer enables a new application
After reviewing an application on the mobile application store, the national officer decides that an

application meets criteria for a need within their jurisdiction. The national officer enables the

application on their service by allowing the application key and selecting the user roles / application

functions that the application is allowed to operate. This information is communicated to the SanteDB

backend where it is then distributed to all connected mobile devices.

5.1.13. District / Regional / National Officer runs summary reporting
A regional officer wishes to determine the performance of their immunization programme within their

jurisdiction. The officer uses the reporting engine of the solution to run a series of reports which

illustrate the performance of their region.

Alternate: The national officer uploads a new report to the reporting engine and selects which users may

view the report and specified parameters they are permitted to view.

5.2. Other Non-Functional Requirements

5.2.1. Performance Requirements
List any performance requirements if available. State any performance requirements and their rationale.

This will help implementers understand the intent and make suitable design choices.

1. The system SHALL be capable of performing simple queries and returning resources from the

local data storage device in a reasonable amount of time.

2. The system SHALL provide a mechanism for compressing inbound and outbound data.

3. The system SHALL provide a mechanism for fragmenting and bundling data. The system SHALL

allow consumers to dictate how this bundling occurs in order to minimize traffic. This

requirement is waived when standardized interfaces are implemented.

5.2.2. Safety Requirements
Specify requirements that are concerned with the possible loss, damage or harm that could result from

the use of the deliverables of this project. Refer to any policies that are being enforced.

4. The system SHALL persist all outbound messages and SHALL track the response to outbound

messages. Unsuccessful messages SHALL be flagged and the system SHALL provide a mechanism

for re-sending data.

SanteDB/SanteSuite Design 19

5. The system SHALL persist all inbound messages and their responses for any operation which

modifies data. The system MAY persist the entire inbound request and/or response message but

SHALL at least persist the unique message identifier. This functionality is related to exec-once

requirements.

6. The system SHALL NOT communicate PHI over unsecured channels and SHALL reject any

messages which are not sent over encrypted channels.

7. The system SHALL use node authentication when communicating with other infrastructure

components. Node authentication SHOULD be used for end-user devices.

8. The system SHOULD use a local root authority for node authentication purposes but SHALL at

minimum allow the trusting of a list of certificates if a root authority is not supported.

5.2.3. Security Requirements
Identify any requirements related to security or privacy issues. Define any user identity authentication

and authorization requirements. Refer to any policies or regulations that are being enforced

5.2.4. Quality Assurance Requirements
Specify any quality characteristics of the software that are important to either the implementer, or

customer. Some examples are: adaptability, availability, correctness, flexibility, interoperability,

maintainability, portability, reliability, reusability, robustness, testability, and usability. Write these to be

specific, quantitative and verifiable requirements when possible. At the least, clarify the relative

preference for various attributes such as ease of use over ease of learning.

SanteDB/SanteSuite Design 20

6. Interface Considerations
This section outlines the requirements of any external interfaces required to implement the project.

6.1. User Interfaces
Describe the logical requirements of a user interface that are required. This may include prototype

screen captures, diagrams, product style guidelines, layout constraints, standard buttons that will

appear on screens. Keyboard shortcuts and error message standards may also be listed here.

6.2. Software Interfaces
Identify any software interface that this project will provide. Include database services, libraries, tools,

and integrated components.

Table 4 - Software Interfaces

Software Package Type Provider License

Microsoft AjaxMin Class Library Microsoft Inc. MS-PL

Newtonsoft JSON.NET Class Library

NHAPI Class Library

Everest Framework Class Library Mohawk College Apache 2.0

AtnaAPI Class Library Mohawk College Apache 2.0

XDSApi Class Library Mohawk College Apache 2.0

Antlr3 Class Library

ExpressionEvaluator Class Library

RestSharp Class Library

StackExchange.Redis Class Library

Twilio.Api Class Library

SQLite.NET Class Library

SQLCipher Class Library

SwaggerWCF Class Library

6.3. Communications Interfaces
Describe any requirements associated with communications functions required by this product. This

could include e-Mail, web-ōǊƻǿǎŜǊǎΣ ƴŜǘǿƻǊƪ ǎŜǊǾŜǊ ŎƻƳƳǳƴƛŎŀǘƛƻƴǎΣ ǇǊƻǘƻŎƻƭǎΣ ŜǘŎΧ

Table 5 - Communications Interfaces

Interface Service Method / Standard Provider

Health Data Management SanteDB iCDR FHIR STU3 / HDSI SanteDB

Clinical Protocol
Management

SanteDB CDSS FHIR STU3 / HDSI SanteDB

User Accounts SanteDB IdP OAUTH SanteDB

In-Application Reporting SanteDB ReportR SQL SanteDB

FHIR Service Core Core FHIR
Services

FHIR DSTU MEDIC SVC Core

Auditing ATNA Auditing ATNA + DICOM SanteGuard

HMIS Reporting TBD TBD TBD

Patient Identity Source Patient Identity PIX SanteMPI

SanteDB/SanteSuite Design 21

Patient Identity Consumer Patient Identity PIX SanteMPI

Patient Demographics
Search

Patient Identity PDQ SanteMPI

SanteDB/SanteSuite Design 22

7. Solutions Architecture

7.1. Solution Architecture
SanteSuite / SanteDB provides a loosely coupled open system architecture. Figure 1 illustrates the major

components of the platform where each bidirectional arrow represents a communications channel over

an open standard.

Figure 1 ς SanteSuite / SanteDB System Architecture

The major components of the architecture are:

¶ SanteDB Server (iCDR): The iCDR is the primary platform component of the SanteSuite platform.

The SanteDB iCDR is responsible (at a high level) for:

o aŀƛƴǘŜƴŀƴŎŜ ƻŦ ƛƴŘƛǾƛŘǳŀƭǎΩ medical records

o Scheduling and maintenance of medical appointments

o Forecasting schedules and demand

SanteDB/SanteSuite Design 23

o Integration with infrastructural systems such as Logistics Management Information

Systems (LMIS), Health Management Information Systems (HMIS), educational systems,

etc.

¶ SanteDB Disconnected Client Core: These software pieces represent the offline capacities of the

SanteSuite / SanteDB platform. These include:

o SanteDB Disconnected Client: A thick client application that operates offline and hosts

SanteDB applets and applications. This client operates on Android, Linux, Windows and

MAC OS and provides complete miniature version of the iCDR for use offline,

synchronizing data when appropriate.

o SanteDB Disconnected Gateway: A version of the Disconnected Client which exposes

standards based interfaces (no user interface) for applications that would otherwise

require an internet connection, to function appropriately using FHIR or HL7v2.

o SanteDB Disconnected Server: A version of the disconnected client that can be used at

clinics which require local connectivity (between systems) while not being connected to

the internet (LAN but no WAN)

¶ Standards Based Systems: Represents third party, existing clinic assets such as admitting

systems, EMRs, etc. which integrate directly with the iCDR using one of its many standards

based interfaces.

¶ SanteDB Applications: Represent applications such as EMRs, HISs, Mobile Applications, and

custom websites which use the HDS to convey data to end users. This also include s the

reference implementations of the patient and provider mobile applications.

¶ SanteSuite HIE Offerings: ¢ƘŜǎŜ ŀǊŜ ǎǇŜŎƛŀƭƛȊŜŘΣ ǇǳǊǇƻǎŜ ŦƻŎǳǎŜŘ ƛƴǎǘŀƴŎŜǎ ƻŦ {ŀƴǘŜ5.Ωǎ ƛ/5w ǘƻ

perform a particular function.

7.1.1. SanteDB / SanteSuite Pre-Packaged Solutions
SanteDB operates at the core of the SanteSuite product offerings. SanteSuite community assets are then

customized for particular operational contexts.

¶ SanteEMR: Is a fully functioning offline-first EMR leverŀƎƛƴƎ {ŀƴǘŜ5.Ωǎ ƳŀǘŎƘƛƴƎ, storage,

privacy and security controls to offer a complete clinic management solution.

¶ SanteMPI: Lǎ ŀ Ŧǳƭƭȅ ŦǳƴŎǘƛƻƴƛƴƎ aŀǎǘŜǊ tŀǘƛŜƴǘ LƴŘŜȄ όatLύ ǿƘƛŎƘ ƭŜǾŜǊŀƎŜǎ {ŀƴǘŜ5.Ωǎ powerful

standards based interfaces and matching plugins to operate as an MPI.

¶ SanteGuard: Lǎ ŀ Ŧǳƭƭȅ ŦǳƴŎǘƛƻƴƛƴƎ ǎŜŎǳǊƛǘȅ ŀǳŘƛǘ ǊŜǇƻǎƛǘƻǊȅ ǿƘƛŎƘ ƭŜǾŜǊŀƎŜǎ {ŀƴǘŜ5.Ωǎ Řŀǘŀ

storage layer and communications capabilities to operate as a fully functioning RFC-3881,

DICOM or FHIR R4 security audit repository.

¶ SanteInsights: Is a reporting plugin solution that allows SanteSuite products (via SanteDB) to

automatically de-identify inbound data and submit to a centralized data warehouse service.

¶ SanteGrid: Is a federation solution which allows multiple SanteDB services and products to be

federated geographically, by program area, etc.

7.2. Network / Physical Architecture
The SanteDB iCDR is designed to support a wide range of deployment options. This will increase the

scalability of the solution across environments. There are envisioned to be three types of deployments

supported by the SanteDB infrastructure:

SanteDB/SanteSuite Design 24

1. Single Server ς In this deployment all necessary functions run on one physical or virtual server.

This will be the default installation supported for developer installations and staging

environments.

2. Simple Multi-Server ς In this deployment functional components are split across servers to

balance load. This deployment will see use of multiple application servers, multiple database

servers, and shared memory caching.

3. Federated ς In this deployment a series of HDS environments are linked together in a federation

of servers. This type of deployment is an envisioned future state.

7.2.1. Single Server Deployment
The single server deployment option simply places the CDR, caching, databases, and supporting tools

onto one server. A sample single server deployment is illustrated in .

Figure 2 - Single Server Deployment

7.2.2. Multi-Server Deployment
A multi-server deployment of SanteDB is also supported. Each of the application server pieces has been

designed with the goal that they can split apart based on role. A multi-server deployment will require

some planning and will depend solely on the environment into which the service is being deployed.

Illustrates a simple multi-server deployment whereby application services are split across physical

servers and the database is not scaled.

SanteDB/SanteSuite Design 25

Figure 3 - Multi Server Deployment Example

This form of deployment can also be scaled out to meet a much larger environment as well. Illustrates

the extreme stress test environment (ESTE) used for SanteDB testing with approximately 4 million fake

patients. The ESTE environment illustrates database, application, and ancillary server scale out

opportunities.

Figure 4 - High capacity scale-out

SanteDB/SanteSuite Design 26

7.3. Software Architecture

7.3.1. {ŀƴǘŜ5.Ωǎ Clinical Data Repository Architecture
The CDR portion of SanteDB is based heavily upon the micro-services architecture. In this architecture, a

series of pluggable services implement a series of contracts. Whenever a function unit wishes to

perform a unit of work it will ask the host context (IServiceProvider) to get the currently configured

service provider.

The service types provided by {ŀƴǘŜ5.Ωǎ HDS are illustrated in Figure 5.

Figure 5 - SanteDB HDS Component Architecture

Each service is described in more detail in Table 6 with those services provided by the MARC-HI Service

Core framework marked in red.

Table 6 - SanteDB HDS Services (To be updated)

Services Contract Description

Messaging IMessageHandlerService The message handler service is started
upon application start/stop and is used to
receive messages, parse them into a
canonical form.

IMessagePersistenceService The message queue service allows
messaging services to queue inbound
messages that need re-processing.

Authorization IIdentityProviderService Responsible for authorizing and
interacting with the identity management
system configured in SanteDB. For
example, if LDAP authentication was
preferred then there would be an
LdapIdentityProviderService

IDeviceIdentityProviderService Responsible for authorizing and managing
the principals related to security device
and node authentication.

SanteDB/SanteSuite Design 27

IApplicationIdentityProviderService Responsible for authorizing and managing
application principals (OAUTH Client keys)
to be used for validating third party
applications can communicate with
SanteDB.

IRoleProviderService Responsible for maintaining and managing
roles on the identity provider.

ServiceCore IStockManagementService,
IMailMessagePersistenceService

These clinical data services are
responsible for the orchestration of
underlying functions to perform the
specified operations they define. For
example: The appointment scheduling
service would be responsible for finding
recommended dates for a particular clinic.

IConceptService The concept management service is
responsible for managing the internal
concept dictionary found within the
SanteDB database.

Consent IPolicyDecisionService The policy decision service is responsible
for ultimately deciding the outcome of the
policies registered for a particular object
(called a securable) and telling the
enforcement service how it thinks the
data should be handled (Grant, Elevate,
Deny)

IPolicyInformationService The policy information service is
responsible for maintaining the linkage
between policies and securables.

IPolicyEnforcementService The policy enforcement service is
responsible for the actual enforcement of
the policy. The PEP is responsible for
masking data, raising audits, blocking
access.

Audit IAuditRepositoryService (storage)

The audit repository service is responsible
for storing local copies of audits in the
SanteDB server that is running. The audit
repository service allows for querying and
insertion of audits

IAuditorService The auditor service is responsible for
shipping audits to a central audit
authority.

Repositories IRepositoryService<>

The repository services are responsible for
the storage and business logic steps of
storing a retrieving data to/from the data
layer. All presentation layers use the
repository layer to interact with objects.

SanteDB/SanteSuite Design 28

Data Store IDataPersistenceService<> The data persistence service is responsible
for taking the internal canonical model of
the SanteDB HDS and translating that data
into the physical data storage unit.

Forecasting IClinicalProtocolRepository
IClinicalProtocolService

The forecasting service is used for creating
care plans and for maintaining and
managing the central list of clinical
protocols that can be used in the SanteDB
platform.

BusinessRules IBusinessRulesService<> The IBusinessRules services provide an
opportunity to alter the behavior of
SanteDB within the context of an applet.
IBusinessRules support being executed on
certain data triggers (Before/After)
(Insert/Update/Obsolete/Query/Retrieve).

Notification IClientRegistryNotificationService The notification service is used to alert
other systems of real-time data storage
events. This is the hook that will most
likely be used when implementing pure
ODD in SanteDB HDS or when merges or
patient registrations occur.

The service execution flow is represented in Figure 6.

Figure 6 - HDS Component Execution Flow

7.3.1.1. Daemon Services

The IDaemonService is not a service contract per-se, rather it is a scaffold interface (contract) which can

be used by services which need to operate as a daemon within the SanteDB application context.

Daemon services are started as application context start and shut-down at application context stop.

SanteDB/SanteSuite Design 29

5ŀŜƳƻƴ ǎŜǊǾƛŎŜǎ ŀǊŜ ǎǘŀǊǘŜŘ ƛƴ ǘƘŜ ƻǊŘŜǊ ƛƴ ǿƘƛŎƘ ǘƘŜȅ ŀǇǇŜŀǊ ƛƴ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ƘƻǎǘΩǎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ

file. If daemon services require another daemon to be started they can subscribe to the dependent

ŘŀŜƳƻƴΩǎ ά{ǘŀǊǘŜŘέ ŜǾŜƴǘΦ

7.3.1.2. Job Services

A job service represents a piece of C# code that can be executed at-will by an administrator. Examples of

job services include:

¶ Exporting data from the main database to a data warehouse

¶ Synchronizing data from SanteDB to another system that may or may not support messaging

¶ Creating a global, country-wide forecast of a particular care protocol

Job services implement the IJob interface. Jobs can declare the parameters (types and name of

parameters) that they support. Parameters will be exposed/collected from the user prior to executing

the administrative job.

7.3.1.3. Timer Services

Timer service jobs are implemented via the ITimerJob interface. Their schedules are dictated by the

ǘƛƳŜǊ ǎŜǊǾƛŎŜΩǎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ƳŜŎƘŀƴƛǎƳΦ ¢ƘŜ ŘŜŦŀǳƭǘ ǘƛƳŜǊ Ƨƻō defined in the MARC-HI ServiceCore

framework uses the application configuration file to manage the execution of timer jobs. SanteDB may

implement additional functionality in future releases to allow database based configuration to occur.

7.3.1.4. Business Rules Services

The business rules services are responsible for the execution of business rules based on system events.

There are two types of services which can be classified as business rules:

1. Event Based: These services implement IDaemonService and subscribe to system events for

ǿƘƛŎƘ ǘƘŜȅ ŀǊŜ ƛƴǘŜǊŜǎǘŜŘΦ CƻǊ ŜȄŀƳǇƭŜΣ ŀ .w9 ǿƘƛŎƘ ǾŀƭƛŘŀǘŜǎ ŀ ǳǎŜǊΩǎ ǇŀǎǎǿƻǊŘ ƛǎ ƻŦ ŎƻǊǊŜŎǘ

length would subscribe to the PasswordChanging event of the IIdentityProvider.

2. Explicit Call: These services implement the IBusinessRulesService<T> and is executed on-

demand. These type of business rules services are only called from repository services that

require explicit business functions to be performed. An example of this would be an

IBusinessRulesService<Patient> which may provide functions to detect merges, or validation

functions

By default, SanteDB has a basic business rules engine service which provides access to both services as

JInt engine.

7.3.1.4.1 JavaScript Business Rules Engine

The JavaScript business rules engine allows implementers to describe their business rules as a series of

JavaScript functions. These have access to the SanteDB JavaScript model objects and can subscribe to

pre/post events on any model object.

The BRE service executes the JavaScript file which can register its rules via the SanteDBBre service. By

default the business rules engine exposes the following interfaces. Technical documentation is provided

in the JavaScript documentation.

Interface Description

SanteDB/SanteSuite Design 30

SanteDBBre The SanteDB Business Rules Engine interface which allows for
registering of validators and event handlers.

SanteDB.App The SanteDB core service for getting application information from the
core service.

SanteDB.HDS The SanteDB service which provides access to the immunization
management system database such as read/write.

SanteDB.Util Provides utility functions for JavaScript such as generating new uuids,
etc.

SanteDB.Patient Provides utility functions for managing, finding and creating patients.

SanteDB.Place Provides utility functions for managing places.

SanteDB.Act Provides utility functions for managing acts.

SanteDBModel Exposes the SanteDB model as JavaScript functions. This is useful for
getting intellisense access to the javascript.

The SanteDBBre module allows rule scripts to register two types of handlers:

¶ Rules: These are functions which have access to data being persisted, or queried prior to or after

the event occurs. A pre event allows the rule to modify the object before the event occurs,

whereas a post event allows the rule to handle events after the object has been persisted.

¶ Validators: These are functions which are those which add validation errors to a return array for

a particular type.

The events to which rules can subscribe is outlined in .

Trigger Event Description

Insert Pre / Post Fired either before or after a new record is being created.
This is fired with a call to insert, regardless if the insert
ultimately resulted in an update.

Update Pre / Post Fired either before or after an existing record is explicitly
updated. This is not fired when the update occurred due to
an insert.

Obsolete Pre / Post Fired before or after an object is obsoleted from the
database.

Query Post Fired after a result set has been retrieved from the
database, but before the data is returned to an external
party. This allows privacy controls such as masking,
redaction, or pseudonymization.

Retrieve Post Fired after a record was specifically retrieved.

Illustrates the use of the SanteDBBre service to register a pre-event trigger which ensures that all

patients do not have a name.

/**
 * Sample Business Rule for Patient
 */
SanteDBBre.AddBusinessRule("Patient" , "AfterInsert" , { statusConcept:
SanteDBModel.StatusKeys.ACTIVE } , function (patient) {
 // No patients may have a name

SanteDB/SanteSuite Design 31

 patient.Name = null ;
 return simplePatient;
});

IŜǊŜΣ ǘƘŜ ōǳǎƛƴŜǎǎ ǊǳƭŜ ƛǎ ōŜƛƴƎ ŀŘŘŜŘ ŦƻǊ άtŀǘƛŜƴǘέ ǘƻ ōŜ ǘǊƛƎƎŜǊ ά!ŦǘŜǊLƴǎŜǊǘέΣ ŀƴŘ ƻƴƭȅ ŀǇǇƭƛed to

patients who have a status code of ACTIVE.

Illustrates the use of the SanteDBBre service to register a validation handler which will return a warning

about the use of the registration of males in a female only programme.

SanteDBBre.AddValidator("Subs tanceAdministration" , function (act) {

 var retVal = new Array();

 if (act.participation.RecordTarget.player Model.genderConceptModel.mnemonic != "F")
 retVal.push(new SanteDBBre.DetectedIssue("Only females may receive vaccines!" ,
SanteDBBre.IssuePriority.Warning)) ;

 return retVal;
});

7.3.1.5. Clinical Protocol Services

{ŀƴǘŜ5.Ωǎ forecasting services (IClinicalProtocolService) is implemented by service classes which

perform on-demand forecasting / scheduling. Passive forecasting (based on events) should be done by a

daemon service which subscribes to events on the persistence layer and/or an IJobService instance that

performs the operation.

Forecasting services generate acts or alerts with min/max times representing the minimum safe date,

maximum safe date and suggested date for an action to occurΦ ¢ƘŜ ŦƻǊŜŎŀǎǘƛƴƎ ǎŜǊǾƛŎŜΩǎ ǇǊƻǇƻǎŀƭ

method accepts a parameter of type Patient and optionally any relevant data (existing vaccination

SubstanceAdministrations, Observations representing AEFIs).

There are two major concepts for the forecasting services in SanteDB:

- Care Protocol: A protocol represents a series of instructions conveyed as when/then conditions

ǿƘƛŎƘ ŀǊŜ ŎƻƴŎŜǊƴŜŘ ǿƛǘƘ ŀ ǇŀǊǘƛŎǳƭŀǊ ŀǎǇŜŎǘ ƻŦ ŀ ǇŀǘƛŜƴǘΩǎ ŎŀǊŜΦ CƻǊ ŜȄŀƳǇƭŜΣ ƛƴ SanteDB, a

protocol may be a particular antigen (OPV protocol) or other actions such as weight.

- Care Plan: The care plan represents an instantiation of a series of protocols which have been

determined for a particular patient. The care plan is an execution of the care protocols placed

into a coherent series of proposals.

In terms of execution, forecasting is handled by two separate interfaces:

- Protocol Definition: Which is responsible for defining the protocol. These are the clinical or

logical description of the definition without necessarily describing the protocol.

- Clinical Protocol Implementation: The implementation is the protocol handler which actually

has executable instructions in the form of when/then conditions which are executed to

construct the care plan.

SanteDB/SanteSuite Design 32

7.3.1.5.1 Xml Protocol Provider

The default implementation of the protocol handler for SanteDB is the XML based protocol handler. This

handler defines a series of protocols in the http://santedb.org/cdss namespace. This namespace is

illustrated in .

http://santedb.org/cdss

SanteDB/SanteSuite Design 33

Element / Path Cardinality Description

@uuid 1..1 Uniquely identifies the clinical protocol in
the global scope of all SanteDB instances.

@id 0..1 Identifies the clinical protocol within the
local SanteDB instance.

@name 0..1 A human readable name for the clinical
ǇǊƻǘƻŎƻƭΦ 9ȄŀƳǇƭŜΥ άht± {ǘŀƴŘŀǊŘ {ŎƘŜŘǳƭŜέ

@version 0..1 Identifies the version of the protocol.
Example: May 2008 WHO

When 1..1 ¢ƘŜ άǿƘŜƴέ ŎƻƴŘƛǘƛƻƴ ǿƘƛŎƘ ƎǳŀǊŘǎ ŜƴǘǊȅ
into the protocol. This when condition is
executed once, if the result is false all rules
in the protocol are skipped.

when/@evaluation 0..1 LŘŜƴǘƛŦƛŜǎ Ƙƻǿ ǘƘŜ άǿƘŜƴέ ŎƻƴŘƛǘƛƻƴ ǎƘƻǳƭŘ
be evaluated. Examples of values are: and
(all conditions must equate to true), or (any
condition must equate to true) or xor (only
one of the conditions should evaluate to
true.

when/hdsiExpression 0..* Represents a single guard condition
expressed as an HDSI query expression (see
documentation of the HDSI documentation
grammar)

when/linqXmlExpression 0..* Represents a single guard condition
expressed as a LINQ expression serialized as
XML. This representation is preferable to
string linqExpression when the full
expressivity of LINQ is required.

when/linqExpression 0..* Represents a simplified string representation
of a linq expression.

Rule 1..* One or more rules which should be
evaluated which represent the individual
steps in a clinical protocol.

rule/@uuid 1..1 Uniquely identifies the clinical step within
the global scope of SanteDB.

rule/@id 0..1 Identifies the rule in the local context of the
protocol itself.

rule/@repeat 0..1 Identifies the number of times that the rule
should be applied. For each iteration a value
ƴŀƳŜŘ άϷƛƴŘŜȄέ ƛǎ ƛƴŎǊŜƳŜƴǘŜŘΦ

rule/when/@evaluation 0..1 Identifies how the when condition of the
rule should be evaluated.

rule/when/HDSiExpression 0..* Represents the HDSI query grammar for the
rule guard condition.

rule/when/linqXmlExpression 0..* Represents the XML serialized LINQ
expression of the rule guard condition.

SanteDB/SanteSuite Design 34

rule/when/linqExpression 0..* Represents a LINQ expression of the rule
guard condition.

rule/then/@repeat 0..* Identifies the number of times that the
άǘƘŜƴέ ŎƻƴŘƛǘƛƻƴ ǎƘƻǳƭŘ ōŜ ŀǇǇƭƛŜŘΦ ¢Ƙƛǎ
differs from the @repeat attribution on
άǿƘŜƴέ ŀǎ ǘƘƛǎ ϪǊŜǇŜŀǘ ǊŜǎults in the when
condition being evaluated once before
ǇŜǊŦƻǊƳƛƴƎ ǘƘŜ άǘƘŜƴέ ŀŎǘƛƻƴΦ

rule/then/jsonMondel 0..1 The JSON representation of the model which
ǎƘƻǳƭŘ ōŜ ǇǊƻǇƻǎŜŘ ǿƘŜƴ ǘƘŜ άǿƘŜƴέ
condition evaluates to true.

rule/then/assign 0..* Instructs the engine to assign one or more
properties to the specified values. These
values (the text of the element) are LINQ
expressions which are evaluated to set the
specified properties.

rule/then/assign/@where 0..1 Identifies the guard condition which should
be applied in order for the assignment to
occur.

rule/then/assign/@propertyName 1..1 Identifies the property in the result model
(the then clause) which should be set to the
result of the LINQ expression.

rule/then/assign/@scope 0..1 Identifies the value of the then model which
carries the scope. This is used for the special
scope keyword in the LINQ expression and
can be used to copy values from other
proposals.

rule/then/add 0..* Instructs the engine to add an instance of
the result of the LINQ expression to the
current propertyName expression.

7.3.1.6. Configuration of the CDR

The first version of the SanteDB HDS backbone will leverage the MARC-HI ServiceCore framework

components heavily. These components are configured via application configuration files. This will

introduce some overhead on large-deployments as configuration files will need to be shared among the

application hosts performing a particular role within the SanteDB infrastructure.

Some components of SanteDB such as forecasting and protocols are configured via a central database

(or rather, their behavior is controlled by the central data store for SanteDB).

7.3.1.7. Plugin Management

Plugin management is performed via a series of assembly attributes which are embedded in the

assembly manifest of the iCDR plugins. The following attributes are to be used for identifying plugin

metadata:

SanteDB/SanteSuite Design 35

Table 7 - Plugin Management Attributes

Attribute Use Description

AssemblyVersion R Identifies the version (major.minor.revision.build) of the
plugin. This information is used for dependency
information.

AssemblyInformationalVersion O An informational version which is displayed on the
administration and management service interface.

AssemblyDescription R A human readable description of the plugin to appear on
the administrative interface.

AssemblyCopyright O Copyright information and/or use restriction messages.

AssemblyPlugin R Identifies the assembly as a plugin. The plugin attribute
identifies the minimum version of the SanteDB core which
is required to run the plugin.

AssemblyPluginDependency O Identifies the name and version of a dependency upon
which the plugin must have installed.

Additionally plugins may embed database modification scripts into their assembly manifest. These

ŘŀǘŀōŀǎŜ ǎŎǊƛǇǘǎ ŀǊŜ ǎǘƻǊŜŘ ƛƴ ŀƴ ·a[ƛƴŦƻǊƳŀǘƛƻƴ ŦƻǊƳŀǘ ǎƛƳƛƭŀǊ ǘƻ [ƛǉǳƛōŀǎŜ ǿƘŜǊŜōȅ άŦŜŀǘǳǊŜǎέ ŀǊŜ

ƛŘŜƴǘƛŦƛŜŘ ŀƴŘ ǊŜƭŜǾŀƴǘ άƛƴǎǘŀƭƭέ ŀƴŘ άǳƴƛƴǎǘŀƭƭέ {v[ŎƻƳƳands are included. These SQL statements may

have guard conditions that are maintained by the database configuration technology selected.

Each feature file is also assigned an RDBMS invariant name that indicates the database management

system for which the installation script is intended (in the case that a plugin works with more than one

RDBMS, for example: the ADO.NET message persistence schemas).

SanteDB plugins may also embed a Plugin.xml resource into their assembly manifest. This plugin

manifest describes the service providers the plugin provides, as well as defines the configuration

parameters for that plugin.

7.3.1.8. Security Architecture

All the components of SanteDB are designed to consider how data is access securely from each layer and

between each component. This architecture requires that all access to method calls to secured services

pass an instance of IPrincipal which represents the authenticated user context within the current

execution pipeline.

There are four major concepts to the SanteDB security architecture:

¶ Identities: Represent an identification of a security asset such as user, device or application. For

example, the user jsmith would represent a user identity.

¶ Principals: Represent an authenticated identity (or collection of identities) representing a single

session. Principals have an identity (the user/device/application accessing the HDS) as well as a

series of claims about the identity (such as role/device/application/authentication method/etc.)

¶ Policies: Represent a definition of some action or group of actions applied against the SanteDB

HDS system (such as login, create role, etc.) or some securable within the SanteDB HDS data

store (such as privacy policies applied to data). Policy definitions are maintained by policy

information providers.

SanteDB/SanteSuite Design 36

¶ Permissions: Represent a granting of access or rights to a policy for a principal. The decision on

whether a principal is granted a permission to perform an operation is made by a policy decision

provider.

The creation of an IPrincipal instance can be from a local authority (such as simple SQL database

authentication) or from a remote authority (such as SWT, JWT, etc.).

7.3.1.8.1 Provenance

All objects at all layers of the SanteDB iCDR persistence layer use the concept of provenance to

attributing all data actions performed on the system. The SanteDB provenance object structure is always

ǿǊƛǘǘŜƴ ōȅ ǘƘŜ ƛ/5w ǎŜǊǾŜǊΣ ǘƘƻǳƎƘ ŎƭƛŜƴǘǎ Ƴŀȅ άǎǳƎƎŜǎǘέ ǾŀƭǳŜǎ όǿƘƛŎƘ ŀǊŜ ŎŀǇǘǳǊŜŘ ƛƴ ǘƘŜ ǎŜǊǾŜǊΩǎ

provenance object.

The properties of the provenance object and their purpose (how they are set) is outlined in.

Property Description Source

User Captures the SID of the user identity that was
attached to the principal when the action
occurred.

Server Authentication
Context ς User Identity

Application Captures the SID of the software application /
vendor attached to the principal when the
action occurred. With this data it is possible to
determine the software application responsible
for the change.

Server Authentication
Context ς Application
Identity

Device Captures the SID of the physical node/device
attached to the principal when the action
occurred. With this data it is possible to
determine the software device responsible for
the action.

Server Authentication
Context ς Device Identity

Session Captures the actual session attached to the
request. This is used for tracking or correlating
actions across requests and actions.

Server Authentication
Context ς Session Identity

Establishment Captures the date / time that the database
transaction that made the change started.

Server Timestamp

External Ref Captures the provenance or user SID that the
ŎƭƛŜƴǘκǎǳōƳƛǘǘŜǊ άŎƭŀƛƳǎέ ŎǊŜŀǘŜŘ ǘƘŜ ŘŀǘŀΦ bƻǘŜ
that this value is for reference only.

Client Claim

External Ref Type Identifies the type of object that the external
security reference points to. Can be a
SecurityUser or SecurityProvenance object.

Calculated

7.3.1.8.2 Basic Security

The default SanteDB messaging services (FHIR, HDSI, etc.) can be configured to use HTTP basic

authentication. This authentication mechanism is tied into the WCF pipeline and uses the current

implementation of IIdentityProvider to authenticate username and password in the HTTP header. The

device identity is established via the TLS client certificate sent in the HTTP request.

SanteDB/SanteSuite Design 37

Applications connecting to a HTTP Basic security service are furthermore required to send their

application public identifier and application secret in the X-SanteDBClient-Authorization HTTP header.

This header has the same format as the BASIC Auth header and includes the client id and secret as a

base64 encoded string.

Claims can also be sent using this scheme via the X-SanteDBClient-Claim HTTP header. Claim values are

base64 encoded in format: claimURI=claimValue. The X-SanteDBClient-Claim HTTP header values repeat

and the authentication pipeline ensures that the user is permitted to make the claim provided.

CƻǊ ŜȄŀƳǇƭŜΣ ǘƘŜ I¢¢t ƘŜŀŘŜǊǎ ŦƻǊ ǳǎŜǊ άWǎƳƛǘƘέ ƻƴ ŎƭƛŜƴǘ e612f88c-3ba3-40fe-8cd6-792836b2088c

making claim that purpose of use is TREATMENT would be:

POST /fhir
Authorization : BASIC anNtaXRoOnBhc3N3b3Jk
X- SanteDBClient - Authorization : BASIC
ZTYxMmY4OGMtM2JhMy00MGZlLThjZDYtNzkyODM2YjIwODhjOjc0MzQyYTE1MTY4YTQxODNhOWU2ZTllZTFmMGUxZWQ0
X- SanteDBClient - Claim: dXJuOm9hc2lzOm5hbWVzOnRjOnhhY21sOjIuMDphY3Rpb246cHVycG9zZT1UUkVBVE1FTlQ=
Content - Type: applicat ion/json+fhir
Content - Length: 2 394

{

7.3.1.8.3 Federated Security

Figure 7 illustrates how a remote client can obtain a token from a federated security token service (STS)

representing an IPrincipal and pass it to the SanteDB HDS. The creation of a local IPrincipal is controlled

by a local IIdentityProviderService implementation. It is imperative that the ACS generate a token format

which is suitable for the HDS messaging interface to consume (i.e. the configurations match), otherwise

the HDS will have no mechanism for verifying tokens.

Figure 7 - Security Architecture

Any ACS service can be used with SanteDB, however it is recommended that the ACS being used support

ǘƘŜ h!ǳǘƘ ǘƻƪŜƴ ǎŜǊǾƛŎŜΩǎ ǇŀǎǎǿƻǊŘ ƎǊŀƴǘ ŀƴŘ ǇǊƻǾƛŘŜ client/device authentication via TLS and/or HTTP

basic auth.

7.3.1.8.4 Default OAuth ACS Implementation

SanteDB provides an implementation of an OAuth STS which generates JSON Web Tokens (JWT)

compatible with SanteDB. The default implementation of the OAuth STS only supports password and

token refresh grant types.

SanteDB/SanteSuite Design 38

The returned value is a JWT token which may subsequently be used by the client to access HDS service

ƛƴǘŜǊŦŀŎŜǎΦ ¢ƘŜ W²¢ ǘƻƪŜƴ ǾŀƭƛŘŀǘƻǊ ƛǎ ƛƴǎŜǊǘŜŘ ƛƴǘƻ ǘƘŜ ²/CΩǎ ²LC ǇƛǇŜƭƛƴŜ ŀƴŘ ŜƴǎǳǊŜǎ ǘƘŀǘ ǘƘŜ ǘƻƪŜƴ ƛǎ

signed by a trusted ACS and that the token has not expired.

The default ACS implementation performs node authentication (authentication of the device) using the

TLS certificate passed in the SSL transport layer. The device certificate used to connect to the ACS forms

the basis of authenticating the node and may be explicit (using the DeviceEvidence field in the

SecurityDevice table) or chained (to a root CA that the ACS trusts).

Applications are authenticated using the HTTP BASIC auth scheme described in the OAuth 2.0

specification. The application is expected to pass its client_id and client_secret as a username/password

in HTTP Authorize header.

The client can make claims about the request by using the X-SanteDBClient-Claim HTTP header. This

header is in the format claimType=claimValue and is base64 encoded. Multiple claims are separated by a

comma.

The following example represents a request for token for user jsmith from client e612f88c-3ba3-40fe-

8cd6-792836b2088c making claim that purpose of use is TREATMENT.

POST /oauth2_token
Content - Type: application/x - www- urlform - encoded
Authorization : BASIC
ZTYxMmY4OGMtM2JhMy00MGZlLThjZDYtNzkyODM2YjIwODhjOjc0MzQyYTE1MTY4YTQxODNhOWU2ZTllZTFmMGUxZWQ0
X- SanteDBClient - Claim: dXJuOm9hc2lzOm5hbWVzOnRjOnhhY21sOjIuMDphY3Rpb246cHVycG9zZT1UUkVBVE1FTlQ=
Content - Length: 204

grant_type=password&username=jsmith&password=password123&scope=http://demo.openiz.org/fhir

7.3.1.8.5 Claim Types

The implementations of IPrincipal should be claims based. In a claims based principal, the authenticated

user information contains a series of claims about that user such as their name, organization, the reason

for access, etc. The claims used in SanteDB are listed in Table 8.

Table 8 - Claim Types

Claim Value Use

urn:oasis:names:tc:xacml:2.0:resource:resource-id String The identifier of the
resource to which the
claim is about.

urn:oasis:names:tc:xacml:2.0:action:purpose PurposeOfUse Indicates the reason why
data is being queried. Used
for policy enforcement
decisions. Valid values are
drawn from the
PurposeOfUse concept set.

urn:oasis:names:tc:xacml:2.0:subject:role String The clinical roles that the
user has.

SanteDB/SanteSuite Design 39

urn:oasis:names:tc:xspa:1.0: subject:facility Url The facility identifier to
which the principle
belongs.

urn:oasis:names:tc:xspa:1.0: subject:organization-id String The organization identifier
to which the principal
belongs.

urn:oasis:names:tc:xacml:1.0: subject:subject-id String The distinguished name of
the principal.

http://openiz.org/claims/grant String The policies to which the
user has been granted
access by the ACS.

http://openiz.org/claims/device-id String The identifier for the
security device from which
the principal is operating.

http://openiz.org/claims/application-id String The identifier for the
security application from
which the principal is
operating.

http://schemas.microsoft.com/ws/2008/06/identity/
claims/role

String Security roles to which the
user belongs.

http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/name

String The user name of the
principal.

http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/authentication

String The authentication result
of the principal.

http://schemas.microsoft.com/ws/2008/06/identity/
claims/authenticationinstant

DateTime The instant in time when
the principal was
authenticated.

http://schemas.microsoft.com/ws/2008/06/identity/
claims/authenticationmethod

String The method of
authentication used.

http://schemas.microsoft.com/ws/2008/06/identity/
claims/expiration

DateTime The date/time that the
ǇǊƛƴŎƛǇŀƭΩǎ ŀǳǘƘŜƴǘƛŎŀǘƛƻƴ
no longer is valid.

http://schemas.xmlsoap.org/ws/2005/05/identity/
claims /sid

UUID The security identifier of
the principal. This is the
UUID of the user.

7.3.1.9. Policy / Privacy Enforcement Architecture

The enforcement of privacy and policies is handled through a series of services within the SanteDB

solution. From a high level, three different types of services are involved:

¶ Policy Information Provider (PIP) ς Is responsible for storing information related to the policies.

The information point is responsible for maintaining a list of IPolicy objects which contain the

name, oid, handler (C# class which is executed upon policy decision), and elevation control.

¶ Policy Decision Point (PDP) ς Is responsible for making a decision related to a policy (or series of

policies) for a given securable. The decision outcome is one of the following options:

o Deny ς The principal has no authorization to access the requested securable or policy.

o Elevate ς The principal can access the securable or policy however they require

additional authentication (such as 2nd level password, TFA, etc.)

http://openiz.org/claims/grant
http://openiz.org/claims/device-id
http://openiz.org/claims/application-id
http://schemas.microsoft.com/ws/2008/06/identity/claims/role
http://schemas.microsoft.com/ws/2008/06/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/authentication
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/authentication
http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationinstant
http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationinstant
http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationmethod
http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationmethod
http://schemas.microsoft.com/ws/2008/06/identity/claims/expiration
http://schemas.microsoft.com/ws/2008/06/identity/claims/expiration
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/sid
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/sid

SanteDB/SanteSuite Design 40

o Grant ς The principal is granted access to the specified securable or policy.

¶ Policy Enforcement Point (PEP) ς Is responsible for listening to events from the SanteDB system

and leveraging the decision and information points to enforce the policy decision. This

implementation can vary between jurisdictions however by default involves either the masking

(i.e. there is something ƘŜǊŜ ȅƻǳ ŎŀƴΩǘ ǎŜŜύΣ ǊŜŘŀŎǘƛƻƴ όƛΦŜΦ ǊŜƳƻǾŀƭ ƻŦ ƛƴŦƻǊƳŀǘƛƻƴύΣ ƻǊ ǇŀǊǘƛŀƭ

disclosure of records.

The process for enforcement is illustrated in Figure 8.

Figure 8 - Policy Enforcement Architecture

Policy enforcement may happen declaratively via enforcement of security attributes on code (most

notably the PolicyPermission and PolicyPermissionAttribute classes). The default policies included in

SanteDB are listed in . The HDS is expected to be aware of all policy identifiers, clients and services

accessing the HDS are merely to be aware of local policies which may have an impact on their function.

Table 9 - SanteDB Policies

Name OID Description

Superuser 1.3.6.1.4.1.33349.3.1.5.9.2 Identities which possess this
policy permission are granted
access to all functions in
SanteDB.

Access Administrative Function 1.3.6.1.4.1.33349.3.1.5.9.2.0 Identities which possess this
policy permission are granted
access to all administrative
functions of SanteDB.

Change Password 1.3.6.1.4.1.33349.3.1.5.9.2.0.1 Allows an identity to change any
ƻǘƘŜǊ ǳǎŜǊΩǎ ǇŀǎǎǿƻǊŘΦ

Create Role 1.3.6.1.4.1.33349.3.1.5.9.2.0.2 Allows an identity to arbitrarily
create a user role.

